25 research outputs found

    Formalismos duales espacio-fase en óptica

    Get PDF
    El objetivo de esta Tesis es el estudio de nuevas aplicaciones de los formalismos espacio-fase en la óptica. En el capítulo I se presenta una descripción de los formalismos a emplear, detallándose sus propiedades y las relaciones matemáticas entre los mismos. En el capítulo II, se describen métodos ópticos para la generación de las funciones espacio-fase. Se discuten distintos procesadores ópticos para la visualización de estas funciones y se detallan además, los aspectos originales derivados de este estudio. En el capítulo III, se analizan los modelos ópticos cuasi-geométricos y su aplicación al estudio de la difracción por objetos tridimensionales (3-D), se establece una relación entre la amplitud de campo de la difracción producida por dichos objetos, y las distintas representaciones espacio-fase. De este modo, las propiedades de estas últimas pueden ser aplicadas al estudio del comportamiento del campo difractado por objetos tridimensionales. En el capítulo IV, se propone una relación entre las funciones características de sistemas ópticos como ser el desenfoque y la razón de Strehl (normalmente tratadas en términos de la óptica de Fourier) y las funciones Espacio-Fase, algunas de las cuales proveen un nexo entre la óptica de Fourier y la óptica geométrica. Finalmente, en el capitulo V, se enuncian las conclusiones generales del trabajo de Tesis.Facultad de Ciencias Exacta

    Visual acuity and contrast sensitivity screening with a new iPad application

    Full text link
    We present a new iPad application (app) for a fast assessment of Visual Acuity (VA) and Contrast Sensitivity (CS) whose reliability and agreement was evaluated versus a commercial screening device (Optec 6500). The measurement of VA was programmed in the app in accordance with the Amblyopia Treatment Study protocol. The CS was measured with sinusoidal gratings of four different spatial frequencies: 3, 6, 12 and 18 cpd at the same contrast values of the Functional Acuity Contrast Test (FACT) included in the Optec 6500. Forty-five healthy subjects with monocular corrected visual acuities better than 0.2 logMAR participated in the agreement study. Bland-Altman analyses were performed to assess the agreement and Deming regressions to calculate Mean Differences (MDs) and Limits of Agreement (LoAs). Coefficients of reliability were 0.15 logMAR for our method and 0.17 logMAR for the ETDRS testing protocol. For testing the CS, our test showed no statistically significant differences compared with the FACT at any spatial frequency (p > 0.05). The MDs were lower than 0.05 log units for all spatial frequencies.This work was funded by 'Ministerio de Economia y Competitividad' - 'Spain' (Grants FIS2011-23175 and DPI2015-71256-R) and 'Generalitat Valenciana' - 'Spain' (Grants PROMETEOII/2014/072 and ACOMP/2014/180).Rodríguez-Vallejo, M.; Llorens Quintana, C.; Furlan, WD.; Monsoriu Serra, JA. (2016). Visual acuity and contrast sensitivity screening with a new iPad application. Displays. 44:15-20. https://doi.org/10.1016/j.displa.2016.06.001S15204

    Performance analysis of optical imaging systems based on the fractional Fourier transform

    Get PDF
    Some image quality parameters, such as the Strehl ratio and the optical transfer function, are analysed in the generalized phase-space, or x-p domain, of the fractional Fourier transform associated with a modified one-dimensional pupil function. Some experimental results together with computer simulations are performed which illustrate the tolerance to defocus of different apertures.Centro de Investigaciones Óptica

    Imaging Performance of a Diffractive Corneal Inlay for Presbyopia in a Model Eye

    Full text link
    (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] In this work we evaluated the imaging properties of the Diffractive Corneal Inlay (DCI), a novel type of corneal implant working by diffraction that we proposed for the treatment of presbyopia. ZEMAX OpticStudio software was employed for the numerical assessment, with simulations performed in a human-based eye model. In the ray tracing analysis, we used the Modulation Transfer Function (MTF), the Area under the MTF (AMTF), and the Point Spread Function (PSF). The theoretical performance of the DCI under different situations was evaluated in comparison with a commercially available pinhole based corneal inlay. Finally, real images were obtained experimentally in vitro in a model eye with inlays prototypes. The obtained results allow to state that the DCI exhibits a very high light throughput, improved imaging capabilities for far and near objects, and robustness against decentrations.This work was supported in part by the Ministerio de Economia y Competitividad under Grant DPI2015-71256-R, and in part by the Generalitat Valenciana, Spain, under Grant PROMETEO/2019/048. The work of D. Montagud-Martinez and V. Ferrando was supported by the Universitat Politecnica de Valencia, Spain, under Grant FPI-2016 and Grant PAID-10-18.Montagud-Martínez, D.; Ferrando, V.; Machado-Olivares, FJ.; Monsoriu Serra, JA.; Furlan, WD. (2019). Imaging Performance of a Diffractive Corneal Inlay for Presbyopia in a Model Eye. IEEE Access. 7:163933-163938. https://doi.org/10.1109/ACCESS.2019.2949223S163933163938

    Twin axial vortices generated by Fibonacci lenses

    Full text link
    Optical vortex beams, generated by Diffractive Optical Elements (DOEs), are capable of creating optical traps and other multifunctional micromanipulators for very specific tasks in the microscopic scale. Using the Fibonacci sequence, we have discovered a new family of DOEs that inherently behave as bifocal vortex lenses, and where the ratio of the two focal distances approaches the golden mean. The disctintive optical properties of these Fibonacci vortex lenses are experimentally demonstrated. We believe that the versatility and potential scalability of these lenses may allow for new applications in micro and nanophotonics.We acknowledge the financial support from Ministerio de Economia y Competitividad (grant FIS2011-23175), Generalitat Valenciana (grant PROMETEO2009-077), and Universitat Politecnica de Valencia (SP20120569), Spain. L.R. acknowledges a fellowship of "Fundacion CajaMurcia", Spain.Calatayud Calatayud, A.; Ferrando Martín, V.; Remón Martín, L.; WALTER DANIEL FURLAN; Monsoriu Serra, JA. (2013). Twin axial vortices generated by Fibonacci lenses. Optics Express. 21(8):10234-10239. https://doi.org/10.1364/OE.21.010234S1023410239218Sakdinawat, A., & Liu, Y. (2007). Soft-x-ray microscopy using spiral zone plates. Optics Letters, 32(18), 2635. doi:10.1364/ol.32.002635Siemion, A., Siemion, A., Makowski, M., Suszek, J., Bomba, J., Czerwiński, A., … Sypek, M. (2012). Diffractive paper lens for terahertz optics. Optics Letters, 37(20), 4320. doi:10.1364/ol.37.004320Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971Davis, J. A., Sigarlaki, S. P., Craven, J. M., & Calvo, M. L. (2006). Fourier series analysis of fractal lenses: theory and experiments with a liquid-crystal display. Applied Optics, 45(6), 1187. doi:10.1364/ao.45.001187Furlan, W. D., Saavedra, G., & Monsoriu, J. A. (2007). White-light imaging with fractal zone plates. Optics Letters, 32(15), 2109. doi:10.1364/ol.32.002109Roux, F. S. (2004). Distribution of angular momentum and vortex morphology in optical beams. Optics Communications, 242(1-3), 45-55. doi:10.1016/j.optcom.2004.08.006Gbur, G., & Visser, T. D. (2006). Phase singularities and coherence vortices in linear optical systems. Optics Communications, 259(2), 428-435. doi:10.1016/j.optcom.2005.08.074Bishop, A. I., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2003). Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Physical Review A, 68(3). doi:10.1103/physreva.68.033802Ladavac, K., & Grier, D. G. (2004). Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Optics Express, 12(6), 1144. doi:10.1364/opex.12.001144Lee, W. M., Yuan, X.-C., & Cheong, W. C. (2004). Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Optics Letters, 29(15), 1796. doi:10.1364/ol.29.001796Tao, S. H., Yuan, X.-C., Lin, J., & Burge, R. E. (2006). Sequence of focused optical vortices generated by a spiral fractal zone plate. Applied Physics Letters, 89(3), 031105. doi:10.1063/1.2226995Furlan, W. D., Giménez, F., Calatayud, A., & Monsoriu, J. A. (2009). Devil’s vortex-lenses. Optics Express, 17(24), 21891. doi:10.1364/oe.17.021891Maciá, E. (2012). Exploiting aperiodic designs in nanophotonic devices. Reports on Progress in Physics, 75(3), 036502. doi:10.1088/0034-4885/75/3/036502Sah, Y., & Ranganath, G. . (1995). Optical diffraction in some Fibonacci structures. Optics Communications, 114(1-2), 18-24. doi:10.1016/0030-4018(94)00600-yGedzelman, S. D., & Vollmer, M. (2011). Crepuscular rays: laboratory experiments and simulations. Applied Optics, 50(28), F142. doi:10.1364/ao.50.00f142Swartzlander, G. A. (2001). Peering into darkness with a vortex spatial filter. Optics Letters, 26(8), 497. doi:10.1364/ol.26.000497Curtis, J. E., & Grier, D. G. (2003). Structure of Optical Vortices. Physical Review Letters, 90(13). doi:10.1103/physrevlett.90.133901Calatayud, A., Rodrigo, J. A., Remón, L., Furlan, W. D., Cristóbal, G., & Monsoriu, J. A. (2012). Experimental generation and characterization of Devil’s vortex-lenses. Applied Physics B, 106(4), 915-919. doi:10.1007/s00340-012-4913-

    Multiplexing THz Vortex Beams With a Single Diffractive 3-D Printed Lens

    Full text link
    [EN] We present a novel method for experimentally generating multiplexed THz vortex beams by using a single three-dimensional printed element that combines a set of radially distributed spiral phase plates, and a binary focusing Fresnel lens. With this element, we have experimentally demonstrated that THz multiplexing can be tailored to fit within a small space on an optical bench. Results are presented beside numerical simulations, demonstrating the robust nature of the experimental method.This work was supported in part by the Ministerio de Economia y Competitividad, Spain, under Grant DPI2015-71256-R, in part by the Generalitat Valenciana, Spain, under Grant PROMETEO II-2014-072, and in part by the National Center for Research and Development in Poland under Grant LIDER/020/319/L-5/13/NCBR/2014.Machado-Olivares, FJ.; PRZEMYSLAW ZAGRAJEK; Ferrando Martín, V.; Monsoriu Serra, JA.; WALTER DANIEL FURLAN (2019). Multiplexing THz Vortex Beams With a Single Diffractive 3-D Printed Lens. IEEE Transactions on Terahertz Science and Technology. 9(1):63-66. https://doi.org/10.1109/TTHZ.2018.2883831S63669

    Imaging Properties of Kinoform Fibonacci Lenses

    Get PDF
    In this paper, we present a new kind of bifocal kinoform lenses in which the phase distribution is based on the Fibonacci sequence. The focusing properties of these DOEs coined Kinoform Fibonacci lenses (KFLs) are analytically studied and compared with binaryphase Fibonacci lenses (FLs). It is shown that, under monochromatic illumination, a KFL drives most of the incoming light into two single foci, improving in this way the efficiency of the FLs. We have also implemented these lenses with a spatial light modulator. The first images obtained with this type of lenses are presented and evaluated.Facultad de Ingenierí

    Physical and mathematical design of an optical spectrometer

    Full text link
    [EN] This work presents the design and construction of a spectrometer made in the laboratory and the development of mathematical models needed to process and analyze the acquired spectrum. For modeling functions it has been used LabVIEW program. The aim is to bring this type of instrumentation to engineering students from both, physical and mathematical point of view. The application has been successfully integrated in the learning strategies of the course Sensores Fisicos, Master Universitario en Sensores Para Aplicaciones Industriales at the Universitat Politecnica de Valencia. As an example, we have characterized different light sources emitting in different regions of the electromagnetic spectrum.[ES] En este trabajo se presenta el diseño y la construcción de un espectrómetro realizado en el laboratorio y el desarrollo de los modelos matemáticos necesarios para procesar y analizar el espectro adquirido con el mismo. Para la modelización de las funciones se ha utilizado el programa LabVIEW. El objetivo es acercar este tipo de instrumentación a los estudiantes de Ingeniería, tanto desde el punto de vista físico como matemático. La aplicación desarrollada ha sido integrada en la asignatura Sensores Físicos del Máster Universitario en Sensores Para Aplicaciones Industriales de la Universitat Politècnica de València. A modo de ejemplo, se han caracterizado diferentes fuentes de iluminación que emiten en distintas regiones del espectro electromagnético.Remón Martín, L.; Ferrando Martín, V.; Furlan, WD.; Monsoriu Serra, JA. (2016). Diseño físico-matemático de un espectrómetro óptico. Modelling in Science Education and Learning. 9(2):5-12. doi:10.4995/msel.2016.5947SWORD51292Nosheen, S., Alam, S., Irfan, M., Qureshi, M. U. A., & Ahmad, S. (2013). Optical Emission Spectrometer, Principle and Latest Industrial Applications. International Journal of Material Sciences, 3(4), 139. doi:10.14355/ijmsci.2013.0304.02T. Duffy, K. Jonassen. Constructivism and the technology of instruction. Lawrence Erlbaum Associates, Hilsdale, New Jersey, 1992.Esquembre, F. (2002). Computers in physics education. Computer Physics Communications, 147(1-2), 13-18. doi:10.1016/s0010-4655(02)00197-2Grayson, D. J., & McDermott, L. C. (1996). Use of the computer for research on student thinking in physics. American Journal of Physics, 64(5), 557-565. doi:10.1119/1.18154Vidaurre, A., Riera, J., Giménez, M. H., & Monsoriu, J. A. (2002). Contribution of digital simulation in visualizing physics processes. Computer Applications in Engineering Education, 10(1), 45-49. doi:10.1002/cae.10016Calatayud, A., Remón, L., Monsoriu, J. A., Giménez, F., & Furlan, W. D. (2013). Ophthalmic: Laboratorio virtual para el diseño de nuevas lentes oftálmicas. Modelling in Science Education and Learning, 6, 173. doi:10.4995/msel.2013.1850Moriarty, P. J., Gallagher, B. L., Mellor, C. J., & Baines, R. R. (2003). Graphical computing in the undergraduate laboratory: Teaching and interfacing with LabVIEW. American Journal of Physics, 71(10), 1062-1074. doi:10.1119/1.1582189Orquín, I., García-March, M.-Á., de Córdoba, P. F., Urcheguía, J. F., & Monsoriu, J. A. (2007). Introductory quantum physics courses using a LabVIEW multimedia module. Computer Applications in Engineering Education, 15(2), 124-133. doi:10.1002/cae.20100J. Casas, "Optica" (Librería General, Zaragoza, 1995)

    WAVEFRONT TESTER: A new virtual laboratory for wavefront sensors teaching

    Full text link
    [EN] We present a new virtual laboratory developed with MatlabcGUI (Graphical User Interface) used toteach di erent aberration eff ects in the "Tecnologi a de Sensores Optoelectr onicos" at "Escuela T ecnicaSuperior de Ingenier a del Diseño" of the Universitat Polit ecnica de Val encia. The objective of this lab is to provide a computer tool to study the working principle of a Shack Hartman sensor and the parameters that determine the dynamic range of the same. Some examples made with di fferent aberrations (defocus,astigmatism, coma) and for diff erent sensor con gurations are presented.[ES] Se presenta un laboratorio virtual desarrollado en MATLAB GUI (Graphical User Interface) para ser utilizado en la asignatura de "Tecnología de Sensores Optoelectrónicos" que se imparte en "Escuela Técnica Superior de Ingeniería del Diseño" de la Universitat Politècnica de València. El objetivo de este laboratorio es servir de herramienta informática para el estudio de un sensor Shack Hartman y los parámetros que determinan el rango dinámico del mismo en la medida de las aberraciones. Se presentan distintos ejemplos realizados con diferentes aberraciones (desenfoque, astigmatismo, coma) y para diferentes configuraciones del sensor.Los autores quieren agradecer al Instituto de Ciencias de la Educación de la Universitat Polit´ecnica de Val´encia y al Vicerrectorat de Pol´ıtiques de Formaci´o i Qualitat Educativa de la Universitat de Val`encia por su apoyo a trav´es del EICE MOMA y de la red UV-SFPIEDOCE14-222789 respectivamente.Ferrando Martín, V.; Furlan, WD.; Remón Martín, L.; Gimenez Palomares, F.; Monsoriu Serra, JA. (2016). WAVEFRONT TESTER: Un nuevo laboratorio virtual para el estudio de los sensores frente de onda. Modelling in Science Education and Learning. 9(1):121-128. https://doi.org/10.4995/msel.2016.4553SWORD12112891Feng, F., White, I. H., & Wilkinson, T. D. (2014). Aberration Correction for Free Space Optical Communications Using Rectangular Zernike Modal Wavefront Sensing. Journal of Lightwave Technology, 32(6), 1239-1245. doi:10.1109/jlt.2014.2301634Idir, M., Kaznatcheev, K., Dovillaire, G., Legrand, J., & Rungsawang, R. (2014). A 2 D high accuracy slope measuring system based on a Stitching Shack Hartmann Optical Head. Optics Express, 22(3), 2770. doi:10.1364/oe.22.002770Li, C., Li, B., & Zhang, S. (2014). Phase retrieval using a modified Shack–Hartmann wavefront sensor with defocus. Applied Optics, 53(4), 618. doi:10.1364/ao.53.000618Marino, J., & Wöger, F. (2014). Feasibility study of a layer-oriented wavefront sensor for solar telescopes. Applied Optics, 53(4), 685. doi:10.1364/ao.53.000685Micó, V., Zalevsky, Z., & Garcia, J. (2012). Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator. Optics Letters, 37(23), 4988. doi:10.1364/ol.37.004988Paurisse, M., Hanna, M., Druon, F., & Georges, P. (2010). Wavefront control of a multicore ytterbium-doped pulse fiber amplifier by digital holography. Optics Letters, 35(9), 1428. doi:10.1364/ol.35.001428Platt B. C., Shack R. (2001). History and principles of Shack-Hartmann wavefront sensing. Journal of Refractive Surgery, 17, S573-S577

    Cantor dust zone plates

    Full text link
    In this paper we use the Cantor Dust to design zone plates based on a two-dimensional fractal for the first time. The pupil function that defines the coined Cantor Dust Zone Plates (CDZPs) can be written as a combination of rectangle functions. Thus CDZPs can be considered as photon sieves with rectangular holes. The axial irradiances produced by CDZPs of different fractal orders are obtained analitically and experimentally, analyzing the influence of the fractality. The transverse irradiance patterns generated by this kind of zone plates has been also investigated.We acknowledge the financial support from Ministerio de Economia y Competitividad (grants FIS2011-23175 and TRA2009-0215), Generalitat Valenciana (grant PROMETEO2009-077), and Universitat Politecnica de Valncia (PAID-05-11), Spain.Ferrando Martín, V.; Calatayud Calatayud, A.; Gimenez Palomares, F.; Furlan, WD.; Monsoriu Serra, JA. (2013). Cantor dust zone plates. Optics Express. 21(3):2701-2706. https://doi.org/10.1364/OE.21.002701S27012706213Siemion, A., Siemion, A., Makowski, M., Suszek, J., Bomba, J., Czerwiński, A., … Sypek, M. (2012). Diffractive paper lens for terahertz optics. Optics Letters, 37(20), 4320. doi:10.1364/ol.37.004320Sakdinawat, A., & Liu, Y. (2007). Soft-x-ray microscopy using spiral zone plates. Optics Letters, 32(18), 2635. doi:10.1364/ol.32.002635Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971Davis, J. A., Ramirez, L., Rodrigo Martín-Romo, J. A., Alieva, T., & Calvo, M. L. (2004). Focusing properties of fractal zone plates: experimental implementation with a liquid-crystal display. Optics Letters, 29(12), 1321. doi:10.1364/ol.29.001321Monsoriu, J. A., Saavedra, G., & Furlan, W. D. (2004). Fractal zone plates with variable lacunarity. Optics Express, 12(18), 4227. doi:10.1364/opex.12.004227Hai-Tao, D., Xin, W., & Ke-Shu, X. (2005). Focusing Properties of Fractal Zone Plates with Variable Lacunarity: Experimental Studies Based on Liquid Crystal on Silicon. Chinese Physics Letters, 22(11), 2851-2854. doi:10.1088/0256-307x/22/11/035Furlan, W. D., Saavedra, G., & Monsoriu, J. A. (2007). White-light imaging with fractal zone plates. Optics Letters, 32(15), 2109. doi:10.1364/ol.32.002109Ge, X., Wang, Z., Gao, K., Wang, D., Wu, Z., Chen, J., … Wu, Z. (2012). Use of fractal zone plates for transmission X-ray microscopy. Analytical and Bioanalytical Chemistry, 404(5), 1303-1309. doi:10.1007/s00216-012-6126-0Janicijevic, L. J. (1982). Diffraction characteristics of square zone plates. Journal of Optics, 13(4), 199-206. doi:10.1088/0150-536x/13/4/004Alda, J., Rico-García, J. M., Salgado-Remacha, F. J., & Sanchez-Brea, L. M. (2009). Diffractive performance of square Fresnel zone plates. Optics Communications, 282(17), 3402-3407. doi:10.1016/j.optcom.2009.05.053Calatayud, A., Ferrando, V., Giménez, F., Furlan, W. D., Saavedra, G., & Monsoriu, J. A. (2013). Fractal square zone plates. Optics Communications, 286, 42-45. doi:10.1016/j.optcom.2012.09.002Kipp, L., Skibowski, M., Johnson, R. L., Berndt, R., Adelung, R., Harm, S., & Seemann, R. (2001). Sharper images by focusing soft X-rays with photon sieves. Nature, 414(6860), 184-188. doi:10.1038/35102526Cao, Q., & Jahns, J. (2002). Focusing analysis of the pinhole photon sieve: individual far-field model. Journal of the Optical Society of America A, 19(12), 2387. doi:10.1364/josaa.19.002387Xie, C., Zhu, X., Li, H., Shi, L., & Wang, Y. (2010). Feasibility study of hard-x-ray nanofocusing above 20 keV using compound photon sieves. Optics Letters, 35(23), 4048. doi:10.1364/ol.35.004048Xie, C., Zhu, X., Li, H., Shi, L., Hua, Y., & Liu, M. (2012). Toward two-dimensional nanometer resolution hard X-ray differential-interference-contrast imaging using modified photon sieves. Optics Letters, 37(4), 749. doi:10.1364/ol.37.000749Giménez, F., Monsoriu, J. A., Furlan, W. D., & Pons, A. (2006). Fractal photon sieve. Optics Express, 14(25), 11958. doi:10.1364/oe.14.011958Giménez, F., Furlan, W. D., & Monsoriu, J. A. (2007). Lacunar fractal photon sieves. Optics Communications, 277(1), 1-4. doi:10.1016/j.optcom.2007.03.086Zhang, B., & Zhao, D. (2010). Square Fresnel zone plate with spiral phase for generating zero axial irradiance. Optics Letters, 35(9), 1488. doi:10.1364/ol.35.001488González, F. J., Alda, J., Ilic, B., & Boreman, G. D. (2004). Infrared antennas coupled to lithographic Fresnel zone plate lenses. Applied Optics, 43(33), 6067. doi:10.1364/ao.43.006067Kelemen, L., Valkai, S., & Ormos, P. (2007). Parallel photopolymerisation with complex light patterns generated by diffractive optical elements. Optics Express, 15(22), 14488. doi:10.1364/oe.15.01448
    corecore